首站-论文投稿智能助手
典型文献
Structure design for high performance n-type polymer thermoelectric materials
文献摘要:
Organic thermoelectric (OTE) materials have been regarded as a potential candidate to harvest waste heat from com-plex,low temperature surfaces of objects and convert it into electricity.Recently,n-type conjugated polymers as organic thermoelectric materials have aroused intensive research in order to improve their performance to match up with their p-type counterpart.In this review,we discuss aspects that affect the performance of n-type OTEs,and further focus on the effect of planarity of backbone on the doping efficiency and eventually the TE performance.We then summarize strategies such as implementing rigid n-type polymer backbone or modifying conventional polymer building blocks for more planar conformation.In the outlook part,we conclude forementioned devotions and point out new possibility that may promote the future development of this field.
文献关键词:
作者姓名:
Qi Zhang;Hengda Sun;Meifang Zhu
作者机构:
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,College of Materials Science and Engineering,Donghua University,Shanghai 201620,China
引用格式:
[1]Qi Zhang;Hengda Sun;Meifang Zhu-.Structure design for high performance n-type polymer thermoelectric materials)[J].中国物理B(英文版),2022(02):36-47
A类:
OTEs,forementioned,devotions
B类:
Structure,design,high,performance,type,thermoelectric,materials,Organic,have,been,regarded,potential,candidate,harvest,waste,heat,from,com,plex,low,temperature,surfaces,objects,convert,into,electricity,Recently,conjugated,polymers,organic,aroused,intensive,research,order,improve,their,match,up,counterpart,In,this,review,we,discuss,aspects,that,affect,further,focus,effect,planarity,backbone,doping,efficiency,eventually,We,then,summarize,strategies,such,implementing,rigid,modifying,conventional,building,blocks,more,conformation,outlook,conclude,point,new,possibility,may,promote,future,development,field
AB值:
0.628523
相似文献
Chip-integrated van der Waals PN heterojunction photodetector with low dark current and high responsivity
Ruijuan Tian;Xuetao Gan;Chen Li;Xiaoqing Chen;Siqi Hu;Linpeng Gu;Dries Van Thourhout;Andres Castellanos-Gomez;Zhipei Sun;Jianlin Zhao-Key Laboratory of Light Field Manipulation and Information Acquisition,Ministry of Industry and Information Technology,and Shaanxi Key Laboratory of Optical Information Technology,School of Physical Science and Technology,Northwestern Polytechnical University,710129 Xi'an,China;Photonics Research Group and Center for Nano and Biophotonics,Ghent University,B-9000 Gent,Belgium;Materials Science Factory,Instituto de Ciencia de Materiales de Madrid(ICMM-CSIC),E-28049 Madrid,Spain;Department of Electronics and Nanoengineering and QTF Centre of Excellence,Aalto University,Fl-02150 Espoo,Finland
Structural and chemical evolution in layered oxide cathodes of lithium-ion batteries revealed by synchrotron techniques
Guannan Qian;Junyang Wang;Hong Li;Zi-Feng Ma;Piero Pianetta;Linsen Li;Xiqian Yu;Yijin Liu-Stanford Synchrotron Radiation Lightsource,SLAC National Accelerator Laboratory,Menlo Park,CA 94025,USA;Department of Chemical Engineering,Shanghai Electrochemical Energy Device Research Center(SEED),School of Chemistry and Chemical Engineering,Frontiers Science Center for Transformative Molecules,Shanghai Jiao Tong University,Shanghai 200240,China;Beijing Advanced Innovation Center for Materials Genome Engineering,Key Laboratory for Renewable Energy,Beijing Key Laboratory for New Energy Materials and Devices,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China;Shanghai Jiao Tong University Sichuan Research Institute,Chengdu 610213,China
Advanced functional nanofibers:strategies to improve performance and expand functions
Xinyu Chen;Honghao Cao;Yue He;Qili Zhou;Zhangcheng Li;Wen Wang;Yu He;Guangming Tao;Chong Hou-School of Optical and Electronic Information,Huazhong University of Science and Technology,Wuhan 430074,China;Department of Electrical Engineering and Computer Science,Massachusetts Institute of Technology,Cambridge 02139,USA;Wuhan National Laboratory for Optoelectronics,Huazhong University of Science and Technology,Wuhan 430074,China;State Key Laboratory of Materials Processing and Die and Mould Technology,School of Materials Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;Research Institute of Huazhong University of Science and Technology in Shenzhen,Shenzhen 518063,China
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。