首站-论文投稿智能助手
典型文献
Icosahedral quasicrystal structure of the Mg40Zn55Nd5 phase and its thermodynamic stability
文献摘要:
The quasicrystal phase is beneficial to increasing the strength of magnesium alloys. However, its complicated structure and unclear phase relations impede the design of alloys with good mechanical properties. In this paper, the Mg40Zn55Nd5 icosahedral quasicrystal (I-phase) structure is discovered in an as-cast Mg–58Zn–4Nd alloy by atomic resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). A cloud-like morphology is observed with Mg41.6Zn55.0Nd3.4 composition. The selected area electronic diffrac-tion (SAED) analysis shows that the icosahedral quasicrystal structure has 5-fold, 4-fold, 3-fold, and 2-fold symmetry zone axes. The thermo-dynamic stability of the icosahedral quasicrystal is investigated by differential scanning calorimetry (DSC) in the annealed alloys. When an-nealed above 300℃, the Mg40Zn55Nd5 quasicrystal is found to decompose into a stable ternary phase Mg35Zn60Nd5, a binary phase MgZn, and α-Mg, suggesting that the quasicrystal is a metastable phase in the Mg–Zn–Nd system.
文献关键词:
作者姓名:
Shuai Zhang;Qianqian Li;Hongcan Chen;Qun Luo;Qian Li
作者机构:
State Key Laboratory of Advanced Special Steels,Shanghai Key Laboratory of Advanced Ferrometallurgy,School of Materials Science and Engineering,Shang-hai University,Shanghai 200444,China;Materials Genome Institute,Shanghai University,Shanghai 200444,China;National Engineering Research Center for Magnesium Alloys,Chongqing University,Chongqing 400044,China
引用格式:
[1]Shuai Zhang;Qianqian Li;Hongcan Chen;Qun Luo;Qian Li-.Icosahedral quasicrystal structure of the Mg40Zn55Nd5 phase and its thermodynamic stability)[J].矿物冶金与材料学报,2022(08):1543-1550
A类:
Icosahedral,Mg40Zn55Nd5,icosahedral,58Zn,4Nd,Mg41,6Zn55,0Nd3,nealed,Mg35Zn60Nd5
B类:
quasicrystal,structure,phase,its,thermodynamic,stability,beneficial,increasing,strength,magnesium,alloys,However,complicated,unclear,relations,impede,design,good,mechanical,properties,In,this,paper,discovered,cast,by,atomic,resolution,high,angle,annular,dark,field,scanning,transmission,microscopy,HAADF,STEM,cloud,like,morphology,observed,composition,selected,area,electronic,diffrac,SAED,analysis,shows,that,fold,symmetry,zone,axes,investigated,differential,calorimetry,DSC,annealed,When,above,found,decompose,into,ternary,binary,MgZn,suggesting,metastable,system
AB值:
0.455068
相似文献
Combining gradient structure and supersaturated solid solution to achieve superior mechanical properties in WE43 magnesium alloy
Wanting Sun;Bo Wu;Hui Fu;Xu-Sheng Yang;Xiaoguang Qiao;Mingyi Zheng;Yang He;Jian Lu;San-Qiang Shi-State Key Laboratory of Ultra-precision Machining Technology,Department of Industrial and Systems Engineering,The Hong Kong Polytechnic University,Hung Hom,Hong Kong,China;Hong Kong Polytechnic University Shenzhen Research Institute,Shenzhen,China;School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China;Centre for Composite Materials and Structures,Harbin Institute of Technology,Harbin 150080,China;Department of Mechanical Engineering,City University of Hong Kong,Kowloon,Hong Kong,China;Department of Mechanical Engineering,The Hong Kong Polytechnic University,Hung Hom,Hong Kong,China
Continuous chemical redistribution following amorphous-to-crystalline structural ordering in a Zr-Cu-Al bulk metallic glass
Xuelian Wu;Si Lan;Xiyang Li;Ming Yang;Zhenduo Wu;Xiaoya Wei;Haiyan He;Muhammad Naeem;Jie Zhou;Zhaoping Lu;Elliot Paul Gilbert;Dong Ma;Xun-Li Wang-Department of Physics,City University of Hong Kong,Hong Kong,China;Herbert Gleiter Institute of Nanoscience,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China;Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China;Quantum Matter Institute,University of British Columbia,Vancouver,British Columbia V6T 1Z4,Canada;Neutron Sciences Platform,Songshan Lake Materials Laboratory,Dongguan 523808,China;Center for Neutron Scattering and Applied Physics,City University of Hong Kong Dongguan Research Institute,Dongguan 523000,China;State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing,Beijing 100083,China;Australian Centre for Neutron Scattering,Australian Nuclear Science and Technology Organisation,Lucas Heights,New South Wales 2234,Australia;City University of Hong Kong Shenzhen Research Institute,Shenzhen 518057,China
In situ neutron diffraction unravels deformation mechanisms of a strong and ductile FeCrNi medium entropy alloy
L.Tang;F.Q.Jiang;J.S.Wróbel;B.Liu;S.Kabra;R.X.Duan;J.H.Luan;Z.B.Jiao;M.M.Attallah;D.Nguyen-Manh;B.Cai-School of Metallurgy and Materials,University of Birmingham,B15 2TT,United Kingdom;Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China;Faculty of Materials Science and Engineering,Warsaw University of Technology,ul.Wo?oska 141,Warsaw 02-507,Poland;State Key Laboratory for Powder Metallurgy,Central South University,Changsha 410083,China;Rutherford Appleton Laboratory,ISIS Facility,Didcot OX11 0QX,United Kingdom;Department of Materials Science and Engineering,City University of Hong Kong,Kowloon,Hong Kong,China;Department of Mechanical Engineering,The Hong Kong Polytechnic University,Hung Hom,Hong Kong,China;CCFE,United Kingdom Atomic Energy Authority,Abingdon,Oxfordshire OX14 3DB,United Kingdom
Microstructure evolution and deformation mechanism of α+β dual-phase Ti-xNb-yTa-2Zr alloys with high performance
Ting Zhang;Daixiu Wei;Eryi Lu;Wen Wang;Kuaishe Wang;Xiaoqing Li;Lai-Chang Zhang;Hidemi Kato;Weijie Lu;Liqiang Wang-State Key Laboratory of Metal Matrix Composites,School of Material Science and Engineering,Shanghai Jiao Tong University,Shanghai,200240,China;School of Metallurgical Engineering,Xi'an University of Architecture and Technology,Xi'an,710055,China;Institute for Materials Research,Tohoku University,2-1-1 Katahira,Sendai,Miyagi,980-8577,Japan;Department of Stomatology,Renji Hospital,School of Medicine,Shanghai Jiao Tong University,Shanghai,200127,China;Department of Materials Science and Engineering,KTH-Royal Institute of Technology,10044,Stockholm,Sweden;School of Engineering,Edith Cowan University,270 Joondalup Drive,Joondalup,Perth,WA 6027,Australia
A high-throughput strategy for rapid synthesis and characterization of Ni-based superalloys
Lei Zhao;Su-Ran Liu;Liang Jiang;Li-Xia Yang;Li-Long Zhu;Hui Wang;Wen-Yu Zhang;Zai-Wang Huang;Yuan-Bin Deng;Christoph Broeckmann;Hai-Liang Huang;Hai-Zhou Wang-Beijing Advanced Innovation Center for Materials Genome Engineering,Beijing Key Laboratory of Metal Materials Characterization,Central Iron and Steel Research Institute,Beijing 100081,China;National Center for Materials Service Safety,University of Science and Technology Beijing,Beijing 100083,China;Institute for Advanced Studies in Precision Materials,Yantai University,Yantai 264005,China;State Key Laboratory of Powder Metallurgy,Central South University,Changsha 410083,China;Institute for Materials Applications in Mechanical Engineering,RWTH Aachen University,Aachen 52062,Germany
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。