首站-论文投稿智能助手
典型文献
Surface nanobubble characterization and its enhancement mechanisms for fine-particle flotation: A review
文献摘要:
Froth flotation is often used for fine-particle separation, but its process efficiency rapidly decreases with decreasing particle size. The efficient separation of ultrafine particles (UFPs) has been a major challenge in the mineral processing field for many years. In recent years, the use of surface nanobubbles in the flotation process has been recognized as an effective approach for enhancing the recovery of UFPs. Com-pared with traditional macrobubbles, nanobubbles possess unique surface and bulk characteristics, and their effects on the UFP flotation beha-vior have been a topic of intensive research. This review article is focused on the studies on various unique characteristics of nanobubbles and their mechanisms of enhancing the UFP flotation. The purpose of this article is to summarize the major achievements on the two topics and pinpoint future research needs for a better understanding of the fundamentals of surface nanobubble flotation and developing more feasible and efficient processes for fine and UFPs.
文献关键词:
作者姓名:
Fangyuan Ma;Patrick Zhang;Dongping Tao
作者机构:
School of Resources and Environmental Engineering,Shandong University of Technology,Zibo 255049,China;Florida Industrial and Phosphate Research Institute,Florida Polytechnic University,Florida 33830,USA
引用格式:
[1]Fangyuan Ma;Patrick Zhang;Dongping Tao-.Surface nanobubble characterization and its enhancement mechanisms for fine-particle flotation: A review)[J].矿物冶金与材料学报,2022(04):727-738
A类:
nanobubble,Froth,macrobubbles,vior
B类:
Surface,characterization,its,enhancement,mechanisms,flotation,review,often,separation,but,efficiency,rapidly,decreases,decreasing,size,efficient,ultrafine,particles,UFPs,has,been,major,challenge,mineral,processing,field,many,years,In,recent,surface,nanobubbles,recognized,effective,approach,enhancing,recovery,Com,pared,traditional,possess,unique,bulk,characteristics,their,effects,beha,have,intensive,research,This,focused,studies,various,purpose,this,summarize,achievements,two,topics,pinpoint,future,needs,better,understanding,fundamentals,developing,more,feasible,processes
AB值:
0.465759
相似文献
Effect mechanism of nonane-1,1-bisphosphonic acid as an alternative collector in monazite flotation:Experimental and calculational studies
Zhao Cao;Xu Wu;Sultan Ahmed Khoso;Wenbo Zhang;Yuling Liu;Mengjie Tian;Jieliang Wang-Institute of Mining Engineering,Inner Mongolia University of Science and Technology,Baotou 014010,China;School of Minerals Processing and Bioengineering,Central South University,Changsha 410083,China;Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources,Central South University,Changsha 410083,China;Department of Mining Engineering,Mehran University of Engineering&Technology,Jamshoro 76062,Pakistan;Powder Metallurgy Research Institute,Central South University,Changsha 410083,China;Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources,Wuhan 430081,China
Boosting photocatalytic activity through tuning electron spin states and external magnetic fields
Chengxiao Peng;Wenjuan Fan;Qian Li;Wenna Han;Xuefeng Chen;Guangbiao Zhang;Yuli Yan;Qinfen Gu;Chao Wang;Huarong Zhang;Peiyu Zhang-Institute for Computational Materials Science,School of Physics and Electronics,Henan University,Kaifeng 475004,China;International Joint Research Laboratory of New Energy Materials and Devices of Henan Province,Kaifeng 475004,China;National Engineering Research Center for Magnesium Alloys,Chongqing University,Chongqing 400044,China;State Key Laboratory of Advanced Special Steels,Shanghai Key Laboratory of Advanced Ferrometallurgy,School of Materials Science and Engineering,Shanghai University,Shanghai 200444,China;Australian Synchrotron,ANSTO,800 Blackburn Rd,Clayton,3168,VIC,Australia
Nano-enhanced biolubricant in sustainable manufacturing:From processability to mechanisms
Yanbin ZHANG;Hao Nan LI;Changhe LI;Chuanzhen HUANG;Hafiz Muhammad ALI;Xuefeng XU;Cong MAO;Wenfeng DING;Xin CUI;Min YANG;Tianbiao YU;Muhammad JAMIL;Munish Kumar GUPTA;Dongzhou JIA;Zafar SAID-School of Mechanical and Automotive Engineering,Qingdao University of Technology,Qingdao 266520,China;School of Aerospace,University of Nottingham Ningbo China,Ningbo 315100,China;School of Mechanical Engineering,Yanshan University,Qinhuangdao 066004,China;Mechanical Engineering Department,King Fahd University of Petroleum and Minerals,Dhahran 31261,Saudi Arabia;Key Laboratory of Special Purpose Equipment and Advanced Processing Technology,Ministry of Education&Zhejiang Province,Zhejiang University of Technology,Hangzhou 310032,China;College of Automotive and Mechanical Engineering,Changsha University of Science and Technology,Changsha 410114,China;College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;School of Mechanical Engineering&Automation,Northeastern University,Shenyang 110006,China;Industrial Engineering Department,University of Engineering and Technology Taxila,Taxila 47080,Pakistan;School of Mechanical Engineering,Shandong University,Jinan 250061,China;College of Mechanical Engineering and Automation,Liaoning University of Technology,Jinzhou 121001,China;College of Engineering,University of Sharjah,Sharjah 27272,United Arab Emirates
Metal matrix nanocomposites in tribology:Manufacturing,performance,and mechanisms
Shuaihang PAN;Kaiyuan JIN;Tianlu WANG;Zhinan ZHANG;Long ZHENG;Noritsugu UMEHARA-Department of Mechanical and Aerospace Engineering,University of California Los Angeles(UCLA),Los Angeles,CA 90095,USA;Physical Intelligence Department,Max Planck Institute for Intelligent Systems,Stuttgart 70569,Germany;Stake Key Laboratory of Mechanical System and Vibration,Shanghai Jiao Tong University,Shanghai 200240,China;Key Laboratory of Bionic Engineering(Ministry of Education),College of Biological and Agricultural Engineering,Jilin University,Changchun 130022,China;Micro-Nano Mechanical Science Laboratory,Department of Micro-Nano Mechanical Science and Engineering,Graduate School of Engineering,Nagoya University,Chikisa-ku Furo-cho,Nagoya,Aichi 464-8601,Japan
机标中图分类号,由域田数据科技根据网络公开资料自动分析生成,仅供学习研究参考。